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Multifractality of the current distribution in directed 
percolation 

Jean Schmittbuhltt, Gabriel Olivier$ and Stkphane R o u t $  
t C E W .  &le Nationale des Ponls et ChaussCes 1, AV. Montaigne, F-93167 N o h -  
k-Grand Cedex, France 
5 Ecnle Normale 3, BP 881 Antananarivo, Madagascar 

Received 23 October 1991 

AbstraeL We investigate numerically the distribution of currents in a two-dimensional 
diode network at the directed percolation lhreshold. We obtain the multifraetal SpectNm 
of his distribution as well as other =ling properlies such as the fractal dimension of the 
backbone, and the scaling of the mnductivity. ?he analysis of the multifractal SpectNm 
pmvides infomalion about the singly mnnected bonds in the lailice. 

I. Introduction 

The conductivity properties of diode networks close to the directed percolation thresh- 
old have been studied theoretically [1], numerically [2] as well as experimentally [3] 
in a series of studies by Redner et a1 between 1981 and 1983. Since then, much 
attention has been paid to the exhaustive characterization of the transport proper- 
ties in disordered systems, such as random resistor networks close to the percolation 
threshold. In particular, the powerful concept of the multifractality [4] of the local 
current distribution bas been evidenced and used to provide a detailed description 
of all critical properties related to transport IS, 61. A few generalizations and appli- 
cations of these concepts were recently brought foward, but in most cases this has 
been in relation to linear transport properties. 

The purpose of the present study is to investigate the critical behaviour of the 
conductivity as well as the scaling of the current distribution in the context of directed 
percolation, i.e. in a random diode network at threshold. Despites the nonlinearity of 
the problem, most features of non-directed percolation can be recovered, as we will 
show later. 

After a short description of the problem and the way we handled it numerically, 
we will report the results obtained on the geometrical properties of the network 
(section 2) and on the transport properties (section 3). 

2. Geometrical properties 

rpt I S  consider B square !artice whose bonds are simp!e diodes (wit!! a constant mn- 
ductance of one for a positive voltage, and perfectly insulating for negative voltage). 
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The overall shape of the lattice is square (size L x L) ,  and the principal axes of the 
lattice are oriented at 45' with respect to the borders. The top and bottom bor- 
ders are considered as equipotential electrodes between which a voltage drop is set, 
whereas periodic boundary conditions are implemented on the lateral borders. All 
diodes are oriented in such a way that the current may flow from bottom to top, but 
not backward. The network is then diluted at random, with a probability of presence 
for each bond equal to p.  In all the simulations reported here, the probability p was 
set to the directed bond percolation threshold p = p ,  GZ 0.6447 [7]. 

Let us first introduce the geometric features of interest for the determination 
of the transport properties. 'Ttvo sets of sites are important, and figure 1 illustrates 
their construction. First, the set of sites (referred to as A)  which are connected to 
the bottom border via a directed path. Second, the set of sites ( B )  from which it 
is possible to reach the top border. These two sets can be constructed in the same 
way by reversing the orientation of the diodes, and exchanging the top and bottom 
borders. There are many ways in which to generate these sets numerically. We use 
the procedure described in [SI. 

Flgure 1. Schematic drawing of a laltice. The bonds in bold or dolled lines are presenl 
bonds which can only cany a current flowing upward. m e  s i ts  such as A and C can 
be reached fromm the botlom bus tar using a directed path, and lhey are pan of a Y I  
called A. Sile B canna1 be reached without following a backward step, and thus it does 
not belong to A. Starling from sites B and C one an Rach the lop bus bar through 
directed palhs. and thus these sites belong U, set U. Site A d m  no1 belong lo this 
set. The intersection of sels A and U forms the geomelrical backbone (shown in bold 
lines). Indeed, a non-zero cumen1 may Row a1 sile C but not at A or B because of the 
directedness mnslnint. 

We first checked the well known scaling of the density of these sets as a function 
of the system sue. The probability, Pa, of belonging to set A in an infinite lattice 
approaches zero as p approaches p c  as Pa a ( p  - p , ) @ ,  where in two dimensions, 
0 GZ 0.277. Away from threshold, two correlation lengths can he defined, either 
parallel, tII, or perpendicular, (L, to the preferred direction. These two length scales 
diverge at threshold with different scaling exponenu U,, ii: 1.7334 and Y, % 1.0972 
[7j. At threshold, we can use the usual finite-size arguments to obtain an expression 
for the probability Pd. 

For a rectangular lattice of size LII x L ,  at threshold, effective correlation lengths 

can be defined such that = {:/"A. The largest 
correlation lengths fulfilling these conditions have to be chosen. In the case of a 

< LII and (, < L ,  and 
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Square geometry, LII = L ,  = L, {,I will be equal to L. In the perpendicular 
direction, for length scales larger than fL and smaller than L, the system appears to 
be homogeneous. These classical results allow the probability to belong to set A to 
be expressed as a function of L for a square lattice: fA a L - ~ / v l l ;  and thus the mass 
of the set A scales as L2-@’yII. Numerically, the latter scaling exponent amounts to 
1.84. 

log(mass) 
6.0 1 

1 .0 
1.0 1.5 2.0 2.5 3.0 

Flgurc 2 bg-log plot of the mass of the set A (.) and of the geometrical backbone 
(+) as a function of the system size L. ?he straight lines through the data arc bcsi tits, 
with rspenive slopes 1.86 and 1.70. 

Figure 2 shows the numerical results obtained for sizes L ranging bom 10 to 
600, and a number of realizations varying from 10000 to 5000 for the two extreme 
sizes. The estimate of the ‘fractal dimension’ of the set A is approximately 1.86, in 
agreement with the expected value. We use here the expression ‘fractal dimension’ 
because of the power-law relationship between the mass of the set and the system size, 
although due to the anisotropic character of the problem, the set is not self-similar, 
but rather self-affine as long as the system size does not extend over the correlation 
lengths. We will come back to some consequences of the anisotropy of the network 
in the discussion of the results relative to the electrical properties of the networks. 

An interesting set can be defined in relation to the conductivity properties: the 
‘geometrical backbone’. This set is defined as the intersection of the two sets A and 
8. Indeed a site can only be part of the backbone (current-carrying part of the lattice) 
if it can receive a current from the bottom electrode and if it can forward it to the top 
electrode. An example of such a structure is shown on figure 3 for a lattice of size 90. 
An interesting property, first noted by Arora et a1 191, is that for any site in the lattice, 
the probability of belonging to A or 5 is independent. Indeed these two probabilities 
depend on the presence or absence of bonds in two disconnected sets (i.e. upper 
and lower cones whose summits are the point of interest). Thus the probability to 
belong to the geometrical backbone can be simply expressed as the product of the 
probabilities to belong to one set or the other. As a simple consequence the fractal 
co-dimension of the backbone is twice that of the set A. The mass of the backbone 
simply scales as L z - 2 ~ ~ ” ~ l ,  thus with dimension 1.68. We have reported in figure 2 
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Flgure I An example of a geometrical backbone obtained for a lattice of size 90. The 
elecuical backbone is a subpart of this structure, that cdn only be obtained dter  the 
detemination of the current distribution. 

the data relative to the backbone, and a linear regression through all points provides 
the estimate 1.70 in agreement with the expected result. 

3. Electrical properties 

3.1. NumericaI technique 

In order to investigate the transport properties of the network, we first need to solve 
the current distribution within the network. This solution turns out to be a very time 

considerably the range of sizes considered (10 < L < 50), as well as the number of 
realizations (varying from 12000 for L = 10 to 100 for L = 50). 

The first step in the simulation is to extract the geometric backbone which nec- 
essarily contains the actual backbone. Then we solve the current distribution by 
assuming a constant conductance in each bond (as if they were resistors) and a unit 
voltage drop between the bottom and top electrodes. We use a conjugate gradient 
algorithm to solve this elementary linear problem, with an accuracy of lo-”. Then 
for all bonds we check that the current is indeed flowing in the allowed direction. For 
lattice sizes above about 10, in most cases, some bonds are found to carry a backward 
arrent .  In this case, these bonds are then considered to be perfect insulators, and 
the currents are recomputed according to this new status. With this updated current 
distribution, we again checked throughout the lattice that all conducting bonds carry 
a positive current, and that all present bonds that were set to an insulating state pre- 
viously are subjected to a negative voltage drop. When these conditions are violated, 
the status of the bond is corrected and the current recomputed. Those two last steps 
are repeated until convergence. 

mnsuming p i  of ‘Ihe simu)aiiofis, h7 ;:e ;e.; of the s:i;cy, *le bad *& Iy.incp 
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Although the bonds which differ between the geometric and electric backbones, 
are not numerous, their number increases rapidly with system size. Thus the proce- 
dure described earlier becomes more and more time consuming. A quick estimate of 
the increase in the computation time with L reveals that the dependence is exponen- 
tial, although each basic step is algebraic in time. 

However, it can be shown that the solution of the potential distribution on the 
structure is unique, and our procedure always converges toward a distribution which 
fulfils the elementary diode characteristic of each bond. Thus the distribution obtained 
k the solution for which we were looking. 

3.2 Resulfs 

”0 types of data were collected through the simulations. First various moments of 
the current distribution were computed (order ranging from 0 to 4 by steps of 0.5) 
and, second, the total histogram of the current distribution was recorded. 

Some moments of the current distribution have a simple physical interpretation. 
me zeroth-order moment is simply the number of bonds which belong to the electri- 
cal backbone. Although the number of bonds which are removed from the geomerical 
backbone increases significantly with system size, it still represents a small fraction of 
the total for the maximum size investigated ( L  = 50). A linear regression through 
the log-log plot of the data provided an estimate of the fractal dimension of the 
actual backbone: 1.67 which seems to be strictly smaller than that of the geometrical 
backbone since, due to finite-size corrections, the effective exponent of the geomet- 
rical backbone over the same set of sizes was somewhat larger than the previously 
reported value. However, it is difficult to he  definitive on this conclusion. The first 
moment is trivial to obtain directly: the sum of currents flowing accross any line 
parallel to the electrodes is equal to the total current, I. Thus the first moment is 
simply LI .  Since a unit voltage drop is set across the network, I is equal to the 
conductance of the network, G. Thus the first moment is equal to M ,  = LG. The 
second moment is the total energy dissipated in the lattice (up to  a factor )). It is 
thus equal to M ,  = $G. From the scaling of the first or second moment, we obtain 
an estimate of the scaling of the conductance: G 0: L-*/”ll, with l/vII k 0.38. This 
result is consistent with the results of Redner cf al (131 in which t/vll k 0.34, and 
Arora ef a1 [9] ( l / q  k 0.4%). The fourth moment of the current distribution can be 
related to the critical behaviour of the resistance noise in the system [lo]. Our data 
indicate that the scaling exponent of the fourth moment will be M4 o( L-b/yll with 
b / q  zz 1.05. 

As mentioned in the introduction, one of the most important features evidenced 
in non-directed percolation is the multifractal character of the current distribution in 
a random resistor network We refer the reader to [4, 61 for a detailed presentation 
of multifractality. Let us simply mention the hasic result: The distribution of the 
logarithm of the currents, N ( j ,  L ) ,  shows a lattice-size dependence which can be 
accounted for by using the reduced variables: f = log(N(j, L ) ) / l o g ( L )  and a = 
-log(j)/ log( L). The function f ( n ) ,  called the multifractal spectrum, turns out to 
be sue independenf, and thus to account for all scaling properties of the current. f 
can be interpreted physically as being the fractal dimension of the set of bonds whose 
current scales with the system size as L - ” .  In addition, the Legendre transform of 
the multifractal spectrum gives the scaling exponents of the moments as a function 
of the moment order. 
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Figure 4 shows three histograms of the current distribution for three sizes L = 10, 
20 and 40, using the rescaled variables f and a. We see that the smaller system size 
differs, but that the other hvo spectra are indistinguishable. The quality of the data 
collapse shows that these distributions are indeed multifractal. 

f 
2.0 - 

1.5- 

1.0 - 

0.5 - 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 

Flgure 4 Rescaled histograms of the current distribution mrrespnding to thme lattice 
Sizes: L = IO (e); t = 20 (+); and L = 40 (x )  using the rscaled variables f and 
(1 deflned in the text. ’lbesz data points fall onto a unique a w e  called the multifractal 
specin” 

The spectrum f (  a) contains all the necessaly information for computing the scal- 
ing of all moments in the network. In particular, it is tempting to use this function 
to extract some information relative to the singly connected bonds within the lattice. 
The singly connected bonds are the bottlenecks which concentrate all the current in a 
blob whase dimensions are those of the correlation lengths. Due to the anisotropy of 
the directed percolation problem, in a lattice of size L x L, the notion of singly con- 
nected bonds is ill defined; the effective transverse correlation length is of the order 
of L ” ~ ~ ” l l  and thus is much smaller that L. Thus the current flowing through these 
bonds should be of the order of L-‘’-’-* a L8’~/ull-1. However due to the fact that 
the conductance fluctuates, the actual value of amin also fluctuates. Consequently, 
the end point of the spectrum, which is expected to lie at a point of coordinates 
(ami,,fmin) asymptotically (i.e. as L goes to infinity), will become a continuous 
curve which can be related to the statistical distribution of the conductivities of the 
lattice. It is thus difficult to extract precise information which is free of the finite-size 
mrrection. Indeed we can see from figure 4 that the minimum value of a is smaller 
than expected (1 - vl/vll zz 0.37). However, we may roughly estimate the hactal 
dimension of the singly connected bonds, by considering the value of f achieved for 
the theoretical ami,,. We obtain the estimate f zz 1.1, which should be.considered 
to be subjected to large uncertainty. 

Let us note here a particularity of the directed percolation problem: Due to 
the anisotropic character of the correlation lengths, one alternative choice to the 
overall square geometly of the lattice is to consider strips of length LII and width 

L,,  with a power-law relation between these length such that LII a ~ 5 2 ” ” ~ .  Such a 
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geometry vias considered in previous numerical and experimental studies by Redner 
12, 31. With this geometry, the multifractal spectrum of the current distribution will 
be different, although it is a simple matter to take this factor into account. With 
the rectangular geometry, let us define f and a using the logarithm of the length 
of the lattice as a scale factor. The physical picture to keep in mind in order to 
connect the spectra in both geometries, is to imagine the square lattice to be a series 
of strips of size LII = L and L ,  = L”~l” l l .  The number of strips is L / L ,  0: L” 
with 1p = 1 - vl/vll. Each of these strips can be considered as independent elements 
which are in parallel between the electrodes. Since we imposed a unit voltage drop 
accrm the square lattice, each strip is subjected to the same boundaly condition, 
and therefore the variable a does not change. In contrast, f is dependent on the 
geometry. The number of bonds carrying a given current in a square lattice, i equal 
to the number of bonds in each strip, multiplied by the number of strips. Thus, 

= fstrip + ‘p. Thus the spectrum relative to a strip geomery can simply be 
obtained from figure 4, by translating the f-axis by a quantity ’p 2: 0.37. Similarly, 
the scaling exponent of any moment computed on a strip geometry can be obtained 
from the one relative to the square geometly hy suhstracting the exponent (0. 

4. Conclusion 

In this paper, we have addressed the transport properties of a diode network at the 
directed percolation threshold. We have numerically observed previously reported 
properties on the geometrical and electrical properties. We have also shown the 
multifractal nature of the current distribution, and discussed the  various forms it may 
take depending on the overall geometry of the networks considered. 

More extensive numerical work may be helpful to reach more definitive mn- 
clusions about some numerical estimates of critical exponents, although the rapid 
increase of mmputer time needed to handled this nonlinear problem may snon turn 
out to be prohibitive. 
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